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Abstract
Background  Key traits for determining rice grain yield include the total number of spikelets per panicle (STOT), the total 
number of grains per panicle (GTOT), and the percentage of grain filling per panicle (GFTOT). Molecular genetic basis of 
grain yield is complex and regulates several interconnected genes. Identification of candidate genes and their favourable 
haplotypes associated with the spikelets, grains and grain filling would accelerate rice grain yield enhancement projects. 
The interface between genetic and environmental factors often influences the grain filling, affecting overall grain yield. 
Therefore, we executed a Genome-Wide Association Study (GWAS) to investigate the candidate genes associated with 
grain-filling traits and to explore genotype × environment (G × E) interactions influencing grain filling traits in rice—STOT, 
GTOT and GFTOT in the subset of Rice Diversity Panel 1 (RDP1).
Methods and results  A set of 188 RDP1 accessions were evaluated across two environments (wet seasons—2021 and 
2022) following the standard package of practices to raise healthy crop. Phenotyping analysis identified promising 
genotypes for three traits of study—STOT and GTOT (Priano Guaira and Tainan-Iku No. 512) and GFTOT (IR8 and Biser-1). 
GWAS was carried out using 5.2 M SNP dataset in the Parallel Identification of QTL’s using EMMAX (PIQUE) pipeline. Five 
QTLs, one for STOT (qSTOT6.6), one for GTOT (qGTOT4.2) and three for GFTOT (qGFTOT3.4, qGFTOT3.5 and qGFTOT12.1), 
were detected. Further, superior haplotypes for eight candidate genes (LOC_Os6g38850 and LOC_OS6g39050 for STOT; 
LOC_OS4g11040 for GTOT; LOC_OS3g62720, LOC_OS3g62750, LOC_OS3g62820, LOC_OS12g03450 and LOC_OS12g03470 
for GFTOT) were identified.
Conclusions  Our results provide key genetic information for the enhancement of grain filling traits in rice. The identified 
candidate genes and superior haplotypes can possibly be utilized in marker-assisted selection to improve rice grain yield 
through gene-pyramid breeding/haplotype-assisted breeding.
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GFTOT	� Grain filling percentage (%) total
GWAS	� Genome wide association study
RDP1	� Rice diversity panel1
GGE	�  Genotype and Genotype by Environment interaction effects
AMMI	� Additive main effect and multiplicative interactions
PIQUE	� Parallel identification of QTL’s using EMMAX

1  Introduction

Rice is a staple cereal and feeds over 50% of the world’s population, mostly living in Asia. Rice grain production has 
realized a three-fold increase during the era of green revolution. The ever-growing global population demands further 
yield improvement for rice. Hence, the prime objective of the rice breeding programs is to improve grain yield within 
the available input resources [1]. Grain yield is a complex trait influenced by panicle number per plant, spikelet number, 
grain number and seed setting rate (grain-filling percentage) in the panicle [2]. Grain filling is a critical stage of the rice 
crop that exerts a significant influence over both grain yield and grain quality attributes [3]. Grain filling begins in mul-
tiple branches simultaneously within a rice panicle and grains progress through various developmental stages prior to 
reaching their characteristic grain weight at physiological maturity [4]. Unfilled or partially-filled spikelets in rice panicles 
represents poor grain filling which is a major concern to be explored to maximize the yield potential of new plant types, 
hybrids and super rice [5]. On the genetic basis of grain yield improvement in rice, numerous quantitative trait loci (QTLs)/
genes were reported. With the available literature, the genetic competency for enhanced grain filling in rice appears to 
be possible through the biotechnological interventions such as mapping/association mapping studies [6, 7].

Genome-Wide Association Study (GWAS) is an approach to identify genomic regions and candidate genes for complex 
traits in rice. This strategy identifies QTLs/genomic regions by examining marker-trait associations, leveraging linkage 
disequilibrium between various molecular markers and functional polymorphisms in a diverse germplasm pool [7, 8]. 
Using GWAS, several important agronomic characters including panicle traits were reported in many large sets of rice 
germplasm panels [8–10]. Based on GWAS, 17 marker trait associations were reported for number of spikelets per panicle 
[11]. Zhong et al. conducted a GWAS using 421 homozygous rice accessions, revealing 21 QTLs closely linked to total 
grain number per panicle [12]. Through GWAS and map based cloning, several candidate genes have been identified for 
yield components rather than specific mechanisms regulating grain filling [13]. However, the utility of reported candi-
date genes for grain yield traits viz., Gn1a, DEP1, IPA1/WFP, GIF1, GNP1, is limited in rice breeding programs [9]. Owing 
to the genetic complexity of grain filling traits, most of the identified QTLs found to be minor and explaining < 10% of 
phenotypic variance [14]. The associated genomic regions with grain filling traits harbour different kinds of candidate 
genes ranging from metabolic to regulatory nature [8, 15]. Thus, haplotype based selection for pooling/pyramiding 
of favourable alleles of the candidate genes identified for grain filling traits through GWAS appears to be a promising 
strategy [16]. The RDP1 represents a collection of 421 rice varieties from 79 countries [17]. This panel was genotyped 
initially using 44,100 SNPs [18], later with 700,000 SNPs [19] and recently with 5,231,435 SNPs [20]. The RDP1 has been 
analysed for more than 30 characters pertaining to agronomic, panicle, seed traits and disease reactions [21–24]. Using 
RDP1 and 5.2 M SNP dataset, a candidate gene OsMTP8.1 for grain manganese concentration was identified by GWAS 
[25]. Twenty-three candidate genes related to panicle traits were identified in a set of 406 RDP1 accessions and a novel 
candidate gene (Os01g0140100) associated with total spikelets number per panicle was mapped [12]. Using japonica 
accessions of RDP1 as parents, biparental and recombinant inbred lines (RIL) mapping populations were generated to 
develop markers for panicle and grain related traits [26]. The primary objective of our study was to identify potential 
stable genotypes and candidate genes associated with the grain filling traits across environments. Given the scope of 
the current study, our focus was on identifying the stable candidate genes based on GWAS analysis and haplotype based 
associations across environments. In the present study, by deploying GWAS of 188 RDP1 accessions with the 5.2 M SNP 
data, five potential QTLs and eight candidate genes with superior haplotypes associated with three key yield traits of 
study viz., total spikelets (STOT), total grains (GTOT) and total grain filling% (GFTOT) were identified which can be utilized 
for breeding towards rice grain yield improvement. In addition, genotype × environment interactions were also studied 
for identifying the stable genotypes and QTLs for grain filling traits.
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2 � Materials and methods

2.1 � Plant material

A subset of 188 accessions from the Rice Diversity Panel1 (RDP1) comprising indica (40), temperate japonica (45), tropical 
japonica (44), aus (31), aromatic (8) and admixed (20) [17, 18] was assessed for three main components of yield (Supplemen-
tary Table 1). Due to low accession numbers from each of six subpopulations (< 50), the subpopulations were not analysed 
separately. The RDP1 has publicly available 5.2 million SNPs with missing data < 5%, minor allele frequency (MAF) > 1% 
imputed with other SNP data sets of rice [20].

2.2 � Field screening and sample collection

The 188 genotypes were evaluated in the Indian Council of Agricultural Research (ICAR)—Indian Institute of Rice Research 
(IIRR), Hyderabad, India (17.53°N and 78.27°E) for two consecutive wet seasons (2021 and 2022) as two environments (E1 
and E2). The field evaluation followed a randomised complete block design with two replications following standard crop 
management and protection practices. Each genotype was planted in five rows with a spacing of 20 × 15 cm and five uniform 
plants in the centre row were tagged. Five panicles were harvested from each tagged plant, so that the grain filling of each 
genotype is truly represented. Thus, 25 panicles per genotype per one replication and 50 panicles per one environment were 
collected. The data of five plants from each replicate is considered as technical replicates. The panicles (from each plant) were 
harvested at physiological maturity and air dried.

2.3 � Phenotyping

Three main traits of yield viz., spikelets total (STOT), grains total (GTOT), grain filling percentage total (GFTOT) per panicle were 
measured. The number of spikelets and grains were counted with a seed counter (Contador 2, PFEUFFER, Germany). The grain 
filling percentage was calculated based on the ratio of total number of grains (filled spikelets) to the total number of spikelets.

2.4 � Statistical analysis

Descriptive statistics was performed using Statistix 8.1 (Analytical software, 2003). The mean data of panicles for each geno-
type across two replications for each environment was considered for density plots using R studio packages—ggplot2 and 
reshape2 [27, 28]; sjlabelled, sjPlot and ggcorrplot [29]; ggplot2, gridExtra, ggpmisc, ggpubr [28–30]. Distribution of data for the 
three traits of study was checked with Shapiro–Wilk and Kolmogorov–Smirnov tests.

The G × E interaction effects were analysed using both the AMMI (Additive Main effects and Multiplicative Interaction) 
and GGE (Genotype and Genotype by Environment) biplots. The AMMI analysis was performed by first using an ANOVA to 
partition the total variation into genotype, environment, and genotype-by-environment interaction components. Then, the 
genotype × environment interaction was decomposed using singular value decomposition (SVD) to extract the interaction 
principal components (IPCA). The model used for the AMMI analysis was as follows;

where, Y_ij represents the trait mean of the ith genotype in the jth environment, μ is the grand mean, g_i is the ith geno-
typic effect, e_j is the jth environmental effect, γ_n is eigenvalue of the nth IPCA, β_in is eigenvector for ith genotype 
for PC n, α_ij is eigenvector for jth environment for PC n, ρ_ij isAMMI residue, ε_ijis error associated with ith genotype 
in jth environment. Stability was interpreted using the magnitude of the IPC scores, with smaller scores indicating more 
stable genotypes across environments.

For the GGE biplots, the Sites Regression (SREG) linear-bilinear model was employed and it is depicted as follows;
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The SREG model emphasizes both the genotype and genotype-environment interaction (G + GE) by adjusting for the 
environment means, allowing clearer interpretation of genotypic performance and stability.

The stability values in GGE biplot analysis was calculated as the square root of the sum of squared scores for the 
principal components (PCs).

PCi PCi represents the score of the ith principal component. The more stable genotypes have lower stability values, 
indicating minimal G × E interaction effects and consistent performance across environments. The biplots were used to 
generate visualizations like the “mean vs. stability” plot, the “which-won-where” plot, and rankings of genotypes across 
environments. These methods were implemented using R packages such as agricolae [31], GGE [32] and stability [32–34]. 
These two analysis were implemented in R software [35]. Further, more details about the AMMI and GGE stability analysis 
can be found in Gollob [36], Gauch [37], Zobel et al. [38].

2.5 � Genome‑Wide Association Study (GWAS)

GWAS was performed in 188 RDP1 accessions for the three traits using 5.2 M SNP dataset [20] in the Parallel Identification 
of QTL’s using EMMAX (PIQUE) pipeline (https://​github.​com/​tony- travis/PIQUE). The pipeline used for the GWAS analysis 
in the present study included the implementation of principal component analysis (PCA), STRU​CTU​RE analysis, kinship 
matrix, and MLM model by default [25]. GWA mapping was based on mixed model approach and EMMA (Efficient Mixed 
Model Analysis) as described in Norton et al. [39]. Based on the informative SNP data of RDP1, population structure was 
already assessed [40] and relatedness (K matrix) among the genotypes was also estimated by pairwise identity-by-state 
(IBS). From the earlier studies of RDP, the significance threshold for the association between SNP and traits was set at 
P < 0.0001 [39, 41]. The issue of false discovery rate (FDR) was also addressed using the Benjamini–Hochberg method for 
estimation of P values [42]. The pipeline identifies the SNP to be significantly associated only when the P < 0.0001 and a 
10% FDR. The mean data of three traits per panicle of each genotype across two environments was considered for GWAS.

2.5.1 � QTL identification

Significant SNP and trait associations were considered if P < 0.0001 as deployed in the previous study of RDP1 [39, 41] 
and false discovery rate (FDR) of 10% as represented in chromosome wise Manhattan plots. Using the CLUMP function 
in PLINK version 1.9, trait wise QTLs have been identified based on peak SNPs with P < 0.0001. For QTL identification, 
peak SNPs with P < 0.0001 harbouring ≥ 10 SNPs were only considered in the present study (Minimum 10 or more SNPs 
with P < 0.0001 within 250 kb). These peak SNPs were grouped into same locus, if the QTLs were within average linkage 
disequilibrium decay value of 250 kb and two peak SNPs with an r2 ≥ 0.3 [18, 25, 43]. The genomic positions of the QTLs 
in the present study were checked for their co-localization with the genomic regions of the reported QTLs for yield 
related traits in rice.

2.5.2 � Analysis of candidate genes at the identified QTLs

LD heat map was constructed based on squared Pearson’s correlation coefficient (r2) using R packages- “LD heatmap” and 
“genetics” [44, 45] to narrow down the candidate genes in the identified QTL region [43]. The list of candidate genes with 
their function in each QTL region consisting of peak SNPs from the LD heat map was extracted using the Rice Genome 
Annotation Project (RGAP 7.0). Annotated genes with transposon, retrotransposon, unknown and hypothetical function 
were not included in the analysis.

2.5.3 � Haplotype analysis

The genes in the peak SNP regions of QTLs for STOT, GTOT and GFTOT with relatively higher expression during repro-
ductive stage and in reproductive tissues as reported in Rice Expression Profile Database (RiceXpro) or Rice Genome 
Annotation Project (RGAP 7.0) were considered for haplotype analysis. The sequences of target candidate genes were 
extracted using PLINK version 1.9. The non-synonymous SNPs in the coding region were extracted from the snp-seek.
irri.org database for haplotype analysis. Association of haplotype groups and phenotype of STOT, GTOT and GFTOT was 
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analysed through analysis of variance (ANOVA) using Minitab statistical software version 21.4.3 (https://​www.​minit​ab.​
com/). The network analysis of the identified candidate genes were acquired from KnetMiner (https://​knetm​iner.​com). 
The identified candidate genes were analysed for their expression in RiceXpro [46] and TIGR [Rice Genome Annotation 
Project database (http://​rice.​uga.​edu/​cgi-​bin/​gbrow​se/​rice/#​search, accessed on 14 October 2024)], representation in 
metabolic pathways in Gramene (https://​plant​react​ome.​grame​ne.​org/) and co-expression in RiceFREND, a platform for 
retrieving coexpressed gene networks in rice (https://​ricef​rend.​dna.​affrc.​go.​jp/) [47].

3 � Results

3.1 � Phenotyping of 188 genotypes from RDP1

Among the 188 accessions of RDP1 panel, based on the trait mean of two environments, STOT ranged from 66.2 (Chiem 
Chanh) to 315.6 (Tainan-Iku No.512) with a mean of 166.77; GTOT ranged from 52.2 (Chiem Chanh) to 223 (Priano Guaira) 
with a mean of 116.41 and GFTOT ranged from 37.2% (Nucleoryza) to 96.0% (Biser 1) with a mean of 69.87% (Table 1). 
The density histograms were represented in Fig. 1. By using Shapiro–Wilk and Kolmogorov–Smirnov tests, GFTOT found 
to normally distributed, STOT appeared to leptokurtic and GTOT observed to skew to the right. The descriptive statistics 
are given in Supplementary Table 2.

Table 1   Phenotype variation 
(average) observed for grain 
filling traits in 188 accessions 
of RDP1 used in the study

SD standard deviation, CV coefficient of variation

Traits Range Average ± SD CV

Spikelets total (STOT) 66.2–315.6 166.7 ± 37.2 22.3
Grains total (GTOT) 52.2–223.0 116.41 ± 31.1 26.7
Grain filling % total (GFTOT) 37.2–96 69.865 ± 10.0 14.2
Panicle length (PL) 16.3–32.5 23.8 ± 2.0 8.6

Fig. 1   Density histogram for grain filling traits in RDP1 (with mean of two environments)

https://www.minitab.com/
https://www.minitab.com/
https://knetminer.com
http://rice.uga.edu/cgi-bin/gbrowse/rice/#search
https://plantreactome.gramene.org/
https://ricefrend.dna.affrc.go.jp/
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3.1.1 � Stability analysis

Stability analysis of 188 accessions of RDP1 in two environments (E1 and E2) showed significant genotype × environ-
ment effects for the three traits of study (Supplementary Fig. 1). For STOT, R43 (DJ24) from the IPCA line was found to 
be a relatively stable genotype across environments. Genotype R121 (Dom Zard) and R10 (CA902/B/2/1) were found to 
be the best genotypes in E1, R166 (Desvauxii) and R110 (RTS14) in E2. Based on the average vs. stability, R43 (DJ24) was 
more stable. As per the Which Won Where/What graph, R23 (Tainan-Iku No.512) and R182 (Priano Guaira) won in E1; R96 
(Canella De Ferro) won in E2 for GTOT, R138 from the IPCA line was found relatively stable genotype across the seasons. 
R93 (Kiang-Chou-Chiu) and R125 (Caucasica) were found to be the best genotypes in E1, R66 (NSFTV5) was found the 
best genotype in E2. Based on the mean vs. stability, R138 (Vavilovi) was more stable. As per the Which Won Where/What 
graph, R23 (Tainan-Iku No.512) won in E1; R96 (Canella De Ferro) won in E2; R182 (Priano Guaira) won in E1 and E2. For 
GFTOT, R175 (Kalubala Vee) from the IPCA line was found to be a relatively stable genotype and R162 (Chinese) farther 
from the IPCA line was found to be the specific adapter across the seasons. R22 (Leuang Hawn) was the best genotype 
in E1, R109 (Creole) and R150 (DK 12) were the best genotypes in E2. Based on the mean vs. stability, R175 (Kalubala Vee) 
and R162 (Chinese) were more stable. As per the Which Won Where/What graph, R4 (IR8) and R173 (CTG1516) won in E1; 
R4 (IR8) and R131 (Biser 1) won in E1 and E2.

3.1.2 � Marker trait associations identified through GWAS

Based on high density 5.2 M SNP data and the phenotype data of 188 accessions, 17 QTLs for the three traits of study have 
been identified (Supplementary Table 3, Fig. 2). The genomic regions/QTLs were considered only when a minimum of 
10 or more peak SNPs with P < 0.0001 were present (Supplementary Table 3). Manhattan plots of STOT, GTOT and GFTOT 
were represented in Fig. 2. The QTLs—qSTOT6.6 (23.14–23.39 Mb), qGTOT4.1 (5.97–6.05 Mb), qGFTOT3.1 (35.57–35.58 Mb), 
qGFTOT3.2 (35.50–35.89 Mb), and qGFTOT12.1 (1.33–1.58 Mb) were found to be significantly associated. The pairwise LD 
correlations have highlighted the span of these QTL regions and based on the LD value of 250 kb, the regions were further 
analysed to locate the candidate genes for haplotype analysis. Based on the genomic regions narrowed down from LD 

Fig. 2   Genome wide association Manhattan plots for A spikelets total (STOT), B grains total (GTOT) and C grain filling percentage total 
(GFTOT) with Quantile–quantile plots in RDP1
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heat maps, candidate genes were identified from public database of rice (Rice Genome Annotation project –RGAP 7.0). 
The list of candidate genes in the genomic regions of identified QTLs viz., qSTOT6.6 (23.14–23.39 Mb)—44 genes; qGTOT4.1 
(5.97–6.05 Mb)—39 genes; qGFTOT3.1 (35.57–35.58 Mb) and qGFTOT3.2 (35.50–35.89 Mb)—47 genes and qGFTOT12.1 
(1.33–1.58 Mb)—35 genes are provided in Supplementary Tables 4 and 5.

3.2 � Candidate genes

The Spatio-temporal gene expression of the candidate genes in the four LD heat map regions (spanning 250 kb) consist-
ing STOT (chromosome 6), GTOT (chromosome 4) and GFTOT (chromosomes 3 and 12) were explored in RiceXpro data-
base. The candidate genes present in the LD heat map region for STOT, GTOT and GFTOT were given in Supplementary 
Tables 4 and 5. Based on their enhanced expression in the reproductive tissues such as pistil, ovary, anther, endosperm 
and embryo or during reproductive stage, two candidate genes (LOC_Os06g38850 and LOC_Os06g39050) in qSTOT6.6; one 
candidate gene (LOC_Os04g11040) in qGTOT4.1; two candidate genes (LOC_OS3g62720, LOC_OS3g62750) in qGFTOT3.1; 
one candidate gene (LOC_Os03g62820) in qGFTOT3.2 and two candidate genes (LOC_OS12g03450 and LOC_OS12g03470) 
in qGFTOT12.1 were considered for haplotype analysis. The Spatio-temporal expression of these genes extracted from 
RiceXpro and TIGR databases are presented in Supplementary Fig. 3.

3.3 � STOT

LOC_Os6g38850 (23,057,309 bp to 23,057,584 bp) encoded an expressed protein with higher expression in ovary/inflo-
rescence (RiceXpro) and has shown 18 non- synonymous SNPs. Out of four haplotype groups observed as haplotype A 
(n = 97, mean: 169.85), haplotype B (n = 26, mean: 168.89), haplotype C (n = 12, mean: 148.57) and haplotype D (n = 8, 
mean: 194.00), haplotype D was found to be superior for STOT compared to other groups. Another gene, LOC_Os6g39050 
(23,185,057 bp to 23,186,296 bp) which encodes syntaxin, has shown increased expression in the reproductive tissues, 
especially in embryo (RiceXpro). One non-synonymous SNP observed at 23,185,435 bp (C/A polymorphism) with amino 
acid substitution from Arg(R) to Ser(S) led to two haplotype groups (Fig. 3). Haplotype A (n = 160, mean: 172.53) is 
observed to be significantly associated with STOT than haplotype B (n = 14, mean: 153.34).

3.4 � GTOT

LOC_Os4g11040 (5,989,515 bp to 5,990,234 bp) encoding an expressed protein has shown higher expression in roots 
at vegetative and reproductive stages with five non- synonymous SNPs. Two haplotypes A (n = 45, mean: 120.95) and B 
(n = 130, mean: 110.76) were identified with haplotype A being significantly superior for GTOT (Fig. 4).

3.5 � GFTOT

LOC_OS03g62720 (35,494,058 bp to 35,497,784 bp) encoding exosome complex exonuclease has shown higher expres-
sion in the reproductive tissues, especially in pistil and seed (RGAP database). The gene harboured three non-synonymous 
SNPs and three haplotype groups were formed (Fig. 5). Haplotype A (n = 81, mean: 71.7%) was found to be a superior 
group than haplotypes B (n = 19, mean: 63.9%) and C (n = 69, mean: 71.3%). Another candidate gene LOC_Os03g62750 
(35,511,319 bp to 35,518,031 bp) which encodes inner membrane protein with increased expression in the inflorescence 
tissue (RiceXpro) also observed in the same QTL region as LOC_OS03g62720. Ten non-synonymous SNPs and three hap-
lotype groups were identified in this gene. No significant difference was observed between haplotypes A (n = 51, mean: 
70.9%) and B (n = 59, mean: 71.3%), while haplotype C (n = 15, mean: 63.5%), which was inferior for the value of GFTOT 
and was significantly different from haplotypes A and B. One more candidate gene LOC_Os03g62820 in the same region 
(35,539,015 bp to 35,540,147 bp) encoding expressed protein has 13 non-synonymous SNPs with enhanced expression 
in anthers, young panicles and endosperm (RGAP database). Three haplotype groups were identified and haplotype 
C (n = 11, mean: 79.1%) is superior and significantly different from haplotype A (n = 65, mean: 71.2%) and haplotype B 
(n = 55, mean: 71%).

Two candidate genes, LOC_OS12g03450 (1,346,249–1,348,258 bp) and LOC_OS12g03470 (1,359,572–1,366,649 bp) on chro-
mosome 12 with higher expression in reproductive tissues as per RiceXpro were identified for GFTOT. Five non-synonymous 
SNPs in LOC_OS12g03450 and two haplotype groups as A (n = 140, mean: 71%) and B (n = 33, mean: 67.7%) were found. 
Haplotype A was significantly different from haplotype B. Four non-synonymous SNPs in LOC_OS12g03470 led to three 
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haplotype groups. Out of which, haplotype A (n = 37, mean: 72.8%) is superior to haplotype B (n = 28, mean: 66.1%) and C 
(n = 97, mean: 69.7%) (Fig. 6).

3.5.1 � Pleotropic analysis

The network analysis by Knetminer revealed the candidate gene LOC_OS6g39050 for STOT encoding syntaxin and found to be 
involved in pollen tube growth (Supplementary Fig. 2). Five candidate genes identified for GFTOT, viz., LOC_OS3g62720 encod-
ing exosome complex exonuclease was linked to days to flowering, seed germination and development; LOC_OS3g62750 
annotated as inner membrane protein was associated with root morphology, days to 50% flowering, leaf shape and heat 
tolerance. Another candidate gene for GFTOT, LOC_OS12g03450 encoding an expressed protein, was associated with regu-
lation of translational process, mitochondrial mRNA modifications, zinc ion binding and pentatricopeptide repeats (PPR) 
containing proteins and LOC_OS12g03470 was associated with plant height and root morphology traits. Knetminer analysis 
was not available for candidate genes LOC_OS4g11040 (GTOT), LOC_Os6g38850 (STOT) and LOC_OS3g62820 (GFTOT). Coex-
pression analysis has shown two of the candidate genes (LOC_Os12g03450 and LOC_Os12g03470) to be associated with 
carbohydrate metabolism (Supplementary Fig. 4).

Fig. 3   Significant association of spikelets total (STOT) on chromosome 6 at 23.0–23.3 Mb. A Local Manhattan plot; the blue solid line indi-
cates the candidate regions (250 kbp upstream and downstream of the peak SNP) and pink dash line represents the candidate gene (LOC_
Os6g39050). B LD heat map for STOT underlying the QTL. C The non-synonymous SNPs with the amino acid variations in the candidate gene 
LOC_Os6g39050 significantly associated STOT. D Variation in the phenotype identified haplotypes associated with STOT
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4 � Discussion

Grain filling in rice is a critical factor influencing the targeted crop returns. Modern rice cultivars/hybrids hold-
ing abundant spikelets per panicle exhibited poor grain filling which limits their yield potential [48]. Wide genetic 
variation was reported for spikelets, grains and grain filling percentage per panicle in rice germplasm [15, 49–51]. 
Screening extensive germplasm collection, including landraces, presents a promising approach to identify potential 
donors for various panicle traits contributing yield. The genetic variation observed in rice germplasm can be utilized 
in future breeding programs to enhance rice productivity [52]. From the germplasm characterized in the present 
study, promising genotypes were identified with maximum trait values for the number of spikelets, grains and grain 
filling percentage indicating the occurrence of promising natural variability in rice and their possible utility in the 
breeding programs for enhancing the yield. The data distribution of the three traits of the study as evidenced from 
the graphical representation also indicates the presence of genotypes for higher spikelet number, grain number and 
grain filling percentage, though in lesser frequency. Similar range for total grain number were also reported from the 
earlier evaluation of RDP1 accessions [21]. Though genetic variability of STOT, GTOT and GFOT was earlier studied, 
reports on their stability across environments are limited in rice. Stable donors for grain filling traits can accelerate 
the breeding program for increasing yield in rice as demonstrated for other traits [53, 54]. Through stability analyses 
based on the mean value of two environments, we identified stable promising donors’ viz., STOT and GTOT (Priano 
Guaira and Tainan-Iku No. 512) and GFTOT (IR8 and Biser-1) in the present study.

GWAS for STOT, GTOT and GFOT in rice precisely characterizes the associated genomic regions to the level of can-
didate gene/s or favourable alleles of candidate gene/s in the present study. LD heatmaps were generated to further 

Fig. 4   Significant association for grains total (GTOT) on chromosome 4 at 5.8–6.1 Mb. A Local Manhattan plot; the blue solid line indicates 
the candidate regions (250 kbp upstream and downstream of the peak SNP) and pink dash line represents the candidate gene (LOC_
Os04g11040). B LD heat map for GTOT underlying the QTL. C The non-synonymous SNPs with the amino acid variations in the candidate 
gene LOC_Os04g11040 for GTOT. D Variation in the phenotype identified haplotypes associated with GTOT
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narrowing down of the genomic regions associated with grain filling traits. From LD heat maps, candidate genes were 
identified from public database of rice (Rice Genome Annotation Project -RGAP 7.0). The accurate identification of the 
candidate genes for the trait of interest through GWAS has been successfully demonstrated by previous studies in 
rice [9, 11, 12, 55–57]. A subset of indica panel from 3 K was subjected to GWAS and a locus with large effect associa-
tion with upper secondary rachis branch (USRB) has been recently identified [15]. The RDP1 was screened for several 
agronomically important characters such as panicle related, seed and disease tolerance traits and genomic regions 
have been identified using 700,000 SNP data [21], spikelet number [11] and different panicle architecture traits [57] 
were reported using 5.2 M SNP data. No common SNP loci were identified in the study compared with Zhong et al. 
[12], where candidate genomic regions for six panicle related traits (total spikelets number per panicle, grain number 
per panicle, empty grain number per panicle, primary branch number, panicle length and panicle number per plant) 
identified in 406 individuals of RDP1 using 411,066 SNPs. This could be due to differences in the evaluated environ-
ments and subset of the individual genotypes subjected in GWAS analysis.

From the local Manhattan plots and LD heat map analysis of five genomic regions on four chromosomes, eight can-
didate genes were identified based on their expression in the reproductive tissues or during the reproductive stage 
from RiceXpro database. The association of haplotypes of eight candidate genes with the respective trait phenotype 
was confirmed through ANOVA in the present study. The identified QTLs in the present study were co-localized with the 
genomic regions of the reported QTLs for yield and yield-associated traits in rice (Supplementary Table 7). Close to the 
QTL region for total spikelets (STOT) on chromosome 6 (23.14–23.29 Mb) identified in the present study, a cloned gene 

Fig. 5   Significant association for grains filling percentage total (GFTOT) on chromosome 3 at 35.4–36.5 Mb. A Local Manhattan plot; the blue 
solid line indicates the candidate regions (250 kbp upstream and downstream of the peak SNP) and pink dash line represents the candidate 
gene (LOC_Os03g62750). B LD heat map (bottom) for GFTOT underlying the QTL. C The non-synonymous SNPs with the amino acid varia-
tions in the candidate gene LOC_Os03g62750 for GFTOT. D Variation in the phenotype identified haplotypes associated with GFTOT
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SPED1 (LOC_Os06g39650) (23.54 Mb) that shortens the pedicels and secondary branches was reported [58]. Also, MQTL6.6 
for grain number per panicle and thousand grain weight, reported by Aloryi et al. [59] (22.29 Mb) is in the vicinity of the 
same QTL region for STOT. Similarly, for the QTL region for GTOT on chromosome 4 (5.97–6.05 Mb), a genomic region 
controlling to the grain weight QTL qGW4.1 (6.57 Mb) [60].

Co-localization of QTLs associated with GFTOT in the regions of chromosome 3.4 (35.5–35.8 Mb) and 3.5 (35.5–35.89 Mb) 
and chromosome 12.1 (1.33–1.58 Mb) was also observed from several previously reported QTLs/genes. QTL qSBN3a 
at RM148-RM227 (35.83 Mb) reported in two reciprocal introgressive line (IL) populations population, was observed 
to near to the genomic region for GFTOT on chromosome 3 [61]. Significant SNPs for secondary branch number at 
36,088,094 bp region [56] were reported ~ 380 kb away from our QTL region on chromosome 3 for GFTOT. A QTL, qTGW3c 
(35.37–35.77 Mb) on chromosome 3 identified in 56 k SNP array of 3 K genome project by Wang et al. [8] co-localized 
exactly within the QTL region of GFTOT. Gene GNP1 that positively regulates the number of secondary rachis number 
and grain number per panicle on chromosome 3 is observed to be in close proximity to the identified QTL for GFTOT in 
the present study [62]. This co-localization of QTLs/genes and/or presence of reported QTL in the very close to the identi-
fied QTLs in the present study reiterates that these genomic regions can possibly be deployed for improving the grain 
filling traits in rice. Bioinformatics analyses of the eight identified candidate genes through public databases supported 
their role in grain filling traits of rice. Six of out of the eight identified candidate genes have known biological functions 
in rice, especially during reproductive tissues and reproductive associated with carbohydrate metabolism and hormone 
regulation. These known functions align with the phenotypic traits observed in our study through haplotype analyses, 
providing evidence that supports their involvement in grain filling. The coexpression analysis and pathway analysis using 

Fig. 6   Significant association for grains filling percentage total (GFTOT) on chromosome 12 at 1.23–1.48 Mb. A Local Manhattan plot; the 
blue solid line indicates the candidate regions (250 kbp upstream and downstream of the peak SNP) and pink dash line represents the can-
didate genes (LOC_Os12g03450 and LOC_Os12g03470). B LD heat map (bottom) for GFTOT underlying the QTL. C The non-synonymous 
SNPs with amino acid variations in the candidate genes—LOC_Os12g03450 (Upper Table) and LOC_Os12g03470 (Lower Table). D Variation 
in the phenotype showed haplotypes associated with GFTOT
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Knetminer and RiceFREND underscored the possible role in the metabolic pathways associated grain filling traits. Inter-
estingly, three candidate genes (LOC_Os03g62750, LOC_Os04g11040 and LOC_Os06g39050) have also shown synteny 
with other poaceae members’ viz., sorghum, foxtail millet and maize. The candidate gene—LOC_Os03g62720 which was 
found to be associated with GFTOT in the present study was reported to be associated with the degradation of unsta-
ble mRNAs containing AU-rich elements (AREs) within their 3′-untranslated regions and suggested to be crucial in the 
regulation for protein synthesis under high temperature stress in rice [63]. Another candidate gene—LOC_Os03g62750 
was also associated with GFTOT encodes albino like (OsALB3) proteins needed for the development of the chloroplast 
by accumulating of light harvesting chlorophyll binding proteins in rice [64]. Being complex trait, a very few candidate 
genes for grain filling traits have been functionally validated in rice despite the reports of hundreds of QTLs. The reported 
candidate genes for grain filling traits range from metabolic genes (e.g. carbohydrate metabolism) to regulatory genes 
(e.g. transcription factors). Thus, the identified new candidate genes for grain filling in the present study can probably 
be added to the repository of the rice yield genes and can be validated further through functional characterization to 
elucidate their role in molecular mechanisms of grain filling.

The superior haplotypes identified across two environments were also found to be stable when checked with indi-
vidual environment. The identified superior haplotypes for grain filling traits are being tested for their performance in 
multi-location studies under All India Coordinated Research Project—Rice (AICRP-R) and the stable haplotype/s will be 
used in the rice breeding programs.

5 � Conclusions

In the present study, a set of 188 Rice diversity Panel (RDP1) accessions were evaluated to identify the promising geno-
types and marker trait associations for three grain filling traits (STOT, GTOT and GFTOT). Promising genotypes identified 
for STOT, GTOT viz., Priano Guaira, Tainan-Iku No.512 and IR8, Biser1 for GFTOT will be used in the breeding programs for 
yield enhancement. Stability analysis, from which-won-where view of GGE biplot, also revealed the above-mentioned four 
genotypes have won in different environments for the three studied traits. GWAS identified five QTLs on chromosomes 
3, 4, 6 and 12 for STOT, GTOT and GFTOT. Bioinformatics analyses of the eight identified candidate genes through public 
databases supported their role in grain filling. Superior haplotypes can possibly be deployed in the haplotype assisted 
breeding for grain filling traits.
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