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ABSTRACT
Advent of changing climatic conditions along with nutrient deficient soils adversely affects the environment for the rice produc-
tion. Wild introgression lines derived from KMR3 and Oryza rufipogon population were evaluated in six environments, including 
optimum and low phosphorus stress condition. Significant differences among the introgression lines were observed for plant 
height, tiller number, biomass, grain yield per plant, days to 50% flowering and harvest index across the environments. Based on 
grain yield observed under optimum phosphorus and limited phosphorus (P stress condition), eight stress tolerance indices were 
calculated and found STI and GMP are the better indices to discriminate among tolerant and susceptible genotypes, and corre-
lation studies also confirmed the significant association between STI and GMP. Cluster analysis based on stress tolerance indi-
ces revealed three different clusters distinguishing genotypes based on their stable performance on yield related traits. AMMI 
and GGE biplot analysis to identify the stable performance across environments revealed NSR60, NSR101, NSR105, NSR85 and 
NSR86 as high grain yielders, whereas NSR135, NSR5 and NSR88 as stable performers. WAASBY-based stability analysis on 
multiple traits (MTSI) showed NSR135, NSR79 and NSR18 with lowest MTSI, indicating their high stability and high mean 
performance compared with parent KMR3. Further genotyping for low P tolerance gene (PSTOL1) and grain yield genes (Gn1a, 
SPIKE, TGW6, DEP1 and OsSPL14) using allele specific markers showed that the desirable alleles of SPIKE, Gn1a and TGW6 were 
derived from wild parent O. rufipogon. Low P tolerance allele PSTOL1 was absent in recurrent parent KMR3; however, the intro-
gression lines harboured desirable alleles, which were derived from O. rufipogon. Further mapping studies will help to identify a 
significant potential QTLs/gene for low P tolerance from O. rufipogon. Wild introgression lines, NSR85, NSR124, NSR80, NSR54, 
NSR86 and NSR88, were found as the high yielding and nutrient stress tolerant genotypes, which can be used as potential donors 
in future breeding programmes for low P stress tolerance.

1   |   Introduction

Phosphorous (P) is an essential macronutrient required for 
ATP synthesis, metabolism, plant growth, nucleic acid syn-
thesis (Liu et  al.  2015) and plant takes up P in the form of 

inorganic phosphate. Reduced availability of phosphorous af-
fects plant growth, genetic architecture, physiological activ-
ities and reduction in plant height, tiller number, number of 
panicles, biomass and grain yield per plant (Das et al. 2017). 
Thus, development of low phosphorus (P) tolerance genotypes 
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is essential for rice cultivation in P-deficient soils, which are 
common in many regions of the world. Majority of the rice 
cultivating soils are acidic in nature with pH range of 5–6. 
In India, 25-Mha area shows a pH below 5.5 and in 23-Mha 
area with pH ranging between 5.6 and 6.5 (Mandal 1997). A 
report by Maji, Obi Reddy, and Sarkar (2012) showed a total 
of 30.65-Mha land is affected by moderate to strongly acidic 
conditions. Thus, the focus on developing low P tolerant rice 
varieties with stable high grain yield, biomass and reduced 
use of P fertilizers is essential for economic and environmen-
tal sustainability of rice cultivation.

Several studies explored the diversity among germplasm and 
molecular markers for low P tolerance in rice and its wild rela-
tives (Anandan et al. 2022; Roy et al. 2021). Pup1 is a major QTL 
identified in aus variety Kasalath that confers low P tolerance 
in rice, and it contains numerous genes that are involved in P 
signalling and homeostasis. One such gene is OsAAD, which 
encodes an amino acid of dehydrogenase family protein. Yan 
et  al.  (2023) reported that the gene OsAAD enhances physi-
ological phosphorus use efficiency (PUE) and grain yield by 
adjusting tillering ability and suggested that it can be a prom-
ising gene for increasing the yield in rice under low and recom-
mended phosphorus supply. Similarly, PSTOL1 gene identified 
in the Pup1 QTL region confers low P tolerance via a signifi-
cant increase in early root growth, root surface area, total root 
growth and other root modifications, and it enables plants to ab-
sorb more nutrients and growth (Wu and Cheng 2014). Studies 
by Chithrameenal et al. (2018), Swamy et al. (2020) and Anila 
et al. (2017) demonstrated the marker-assisted introgression of 
PSTOL1 gene exhibited an enhanced low P tolerance in rice. 
Beyond PSTOL1 several novel loci and haplotypes reported for 
low P tolerance in rice (Yumnam, Rai, and Tyagi 2017; Pariasca-
Tanaka et al. 2014; Neelam et al. 2017). However, further field 
evaluation, confirmation and validations of those loci were not 
performed in majority of the studies.

In past, attempts were made to develop low P tolerant lines using 
available varieties and landraces, and significant improvements 
were made using marker assisted selection. Another alternate 
way is the use of wild progenitor species such as Oryza nivara and 
Oryza rufipogon that can actively extract and translocate P from 
soil to plant tissues under low P conditions (Anandan et al. 2022). 
Wild introgression lines derived from O. rufipogon were utilized 
for grain yield improvement (Ram et al. 2007; Neelam et al. 2016; 
De Silva et al. 2023), photosynthetic efficiency (Haritha et al. 2017; 
Hamaoka et  al.  2017; Yadavalli et  al. 2022), salinity (Quan 
et al. 2018), drought (Zhang et al. 2006), low P tolerance (Sunanda 
et al. 2023; Basavaraj et al. 2022) and other biotic, abiotic stress 
tolerance (Ram et  al.  2007; Gu et  al.  2012; Atwell, Wang, and 
Scafaro  2014; Balakrishnan et  al. 2022; Balakrishnan, Fukuta, 
and Neelamraju 2024). Introgression lines derived from wild 
species were reported to have higher grain yield, P-use efficiency 
(PUE) and superior performance than cultivars and mega vari-
eties (Balakrishnan, Surapaneni, and Yadavalli  2020; Sunanda 
et al. 2023; Basavaraj et al. 2022; Magudeeswari et al. 2024). PUE 
is the ratio of biomass or grain yield to P uptake, and it reflects the 
ability of plants to acquire and utilize P from the soil (Rose and 
Wissuwa 2012). Wild introgression lines of rice were observed to 
have great genetic variations for low P tolerance, root traits and 
molecular mechanisms that regulate P uptake and transport. 

Through conventional and molecular breeding, several introgres-
sion lines were identified (Basavaraj et al. 2021; Xiang et al. 2015; 
Basavaraj et al. 2022; Sunanda et al. 2023), and numerous QTLs 
have been detected from introgression lines for low P stress (Li 
et al. 2009; Ren et al. 2015).

For a breeding programme, the main objective is to identify and 
develop stable genotypes for grain yield across varying climatic 
and soil conditions; hence, G × E interaction study is essential 
for varietal development (Kempton and Fox  1997; Atlin et  al. 
2000). AMMI and GGE biplot are excellent tools for visualiz-
ing the multi environment studies (Gauch 2006). Additionally, 
genomic stability of wild introgression lines is to be tested to 
avoid the reappearance of wild traits in the advanced genera-
tions. Most of the agronomic, yield and low P tolerance traits are 
quantitative in nature. Keeping this in view, introgression lines 
derived from KMR3/O. rufipogon were studied for their stable 
performance for grain yield and other yield contributing traits 
by evaluating them across six environments with two different 
soil P conditions.

2   |   Materials and Methods

2.1   |   Plant Materials

The experimental material comprised of 135 backcross intro-
gression lines (BILs) derived from a cross between Oryza sativa 
cv. KMR3 (Karnataka Mandya Restorer 3) and wild parent O. ru-
fipogon. KMR3 is a stable restorer line used as a parent in KRH2 
hybrid development, having bold grain type, and showed a sig-
nificant reduction for shoot and root dry weight under nutrient 
stress condition (Das et  al.  2017). The O. rufipogon accession 
WR120 was collected from Kerala, India, and maintained at 
IIRR Hyderabad. The mapping population (NSR) was developed 
from interspecific hybridization using parents of KRH2 and O. 
rufipogon (IR58025A/O. rufipogon//IR58025B///IR58025B////
KMR3) (Marri et  al.  2005). IR58025A is a wild abortive cyto-
plasmic male sterile line of rice, and IR58025B is a maintainer 
line or isogenic line. In the current study, the advanced mapping 
population derived from this interspecific multiparental cross 
was subjected for multienvironment phenotyping and genotyp-
ing for yield and low P tolerance.

2.2   |   Experimental Design

Backcross introgression lines (BILs) were grown at the Indian 
Institute of Rice Research, Hyderabad, and the field is situ-
ated at 17°19′ north and 78°29′ east and an altitude of 549 m 
above mean sea level. The materials were evaluated in six en-
vironments including four wet season (Kharif) 2014 (E1), 2015 
(E2), 2016 (E3) and 2018 (E4) under transplanted optimum 
soil P conditions and two wet seasons, that is, Kharif 2016 
(E5) and 2018 (E6) under low soil phosphorous (P) conditions. 
Twenty-five days old healthy seedlings were transplanted 
with 20-cm row spacing and 15-cm plant spacing. Except the 
fertilizer dose, similar standard packages were practised to 
maintain proper plant growth and grain yield in all the envi-
ronments. Recommended dose of NPK (100:60:40 kg/ha) was 
applied under optimum soil P conditions, and recommended 
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dose of N:K (100:40 kg/ha) was applied in low soil P condi-
tions. The low P soil plot at IIRR Hyderabad was developed 
and maintained for more than 35 years without application of 
phosphorous fertilizer. The available soil phosphorous (Olsen 
P) is <2 kg/ha, and the genotypes were evaluated in same 
field in subsequent years. The experimental materials were 
evaluated in a randomized completed block design (RCBD) 
with three replications and the same was practised in all six 
environments.

2.3   |   Evaluation of Introgression Lines for low P 
Tolerance

A 135 BILs evaluated for low P tolerance in Kharif 2016 and 2018 
under optimum or recommended P and low P soil condition. The 
mean yield data recorded under optimum P and low P condi-
tion in both seasons were used for identification of tolerant and 
susceptible lines. Grain yield data recorded under optimum P 
(Yp) and stress (Ys) condition were used for estimation of stress 
tolerance indices, namely,

•	 Stress Tolerance Index—STI = YPYS/(YP)2 (Fernandez 
1992),

•	 Tolerance Index—TOL = YP − YS (Rosielle and Hamblin 1981),

•	 Stress Susceptibility Index—SSI = (1 − YS/YP)/ (1 − YS/YP) 
(Fischer and Maurer 1978),

•	 Yield Stability Index—YSI = YS/YP (Bouslama and 
Schapaugh 1984),

•	 Yield Reduction Ratio—YR = 1 − (YS/YP) (Golestani-Araghi 
and Assad 1998),

•	 Yield Index—YI = YS/YS (Gavuzzi et al. 1997),

•	 Per cent yield reduction—PYR = ((YP − YS)/YP) × 100 
(Yaseen and Malhi 2009) and

•	 GMP = (YP × YS) 0.5 (Fernandez 1992),

where YS is the grain yield of genotypes under low soil P 
condition, YP is the grain yield of genotypes under optimum 
soil P condition and YS and YP are the mean grain yield of 
all genotypes under low soil P and optimum soil P conditions, 
respectively.

2.4   |   Evaluation for BILs for Grain Yield Related 
Traits Under Different Environments

The BILs were evaluated, and data were recorded on five random 
plants in each replication, and mean data of each replication was 
used for analysis. The following 10 morphological traits were re-
corded on five random plants in each replication, that is, days to 
50% flowering (DFF), plant height (PH) (cm), number of tillers 
(NT), number of productive tillers (NPT), panicle weight (PW) 
(g), biomass (BM) (g), grain yield per plant (YLDP) (g), thousand 
grain weight (TGW) (g), total dry matter (TDM) (g) and harvest 
index (HI). Similarly, data were recorded on all the six environ-
ments. Based on grain yield, top performing lines, 25 lines were 
selected and considered for genotyping and stability analysis.

2.5   |   Genotyping of top Performing Lines for Low 
P Tolerance and Grain Yield Related Traits

Genotyping for low P tolerance and grain yield was performed 
on selected top performing lines. Fresh healthy leaves were 
collected, and genomic DNA was extracted using CTAB buffer 
method (Doyle and Doyle 1987). For grain yield traits, a set of 
nine allele specific markers was used from the previous report 
by Kim et al. (2016), and for low P tolerance six codominant 
markers located at the 90-kb InDel region was used (Chin 
et  al.  2011). The PCR reaction mixture consists of 30–50 ng 
of template DNA (2 μL), 10X PCR assay buffer + MgCl2 (1 μL), 
2 mM dNTPs (0.6 μL), 10 pico mole forward and reverse primer 
(1 μL), 1 unit Taq DNA polymerase (0.1 μL) and nuclease free 
water. The PCR reaction cycle for yield marker was carried 
out at 94°C of initial denaturation temperature for 5 min, 94°C 
of denaturation for 1 min, 55°C of annealing temperature for 
1 min and 72°C of extension for 2 min, and 72°C of final exten-
sion for 10 min was followed for 35 cycles. For low P tolerance 
markers, 94°C of initial denaturation temperature for 5 min, 
94°C of denaturation for 30 s, 58°C of annealing temperature 
for 30 s, 72°C of extension for 45 s and 72°C of final extension 
for 10 min were followed for 35 cycles using BioRad thermal 
cyclers. Amplified fragments were separated in 2.5% agarose 
gel, and fragments were visualized in gel documentation unit 
(VILBER- Bio-Print).

2.6   |   Statistical Analysis

The mean phenotypic data obtained from optimum P and low 
P environments were used for statistical analysis. Descriptive 
statistics was calculated using STAR ver. 2.0.1. Mean data of 
grain yield related traits obtained under optimum soil condi-
tions were used for frequency analysis using SR plot (Science 
and Research plot). Mean data of all the genotypes obtained 
under optimum soil P condition and low P condition were 
used for correlation studies using metan package in RStudio. 
Further boxplot was constructed to check the environmental 
variations for various grain yield related traits using RStudio 
package ‘ggplot2’. Comparative study between optimum P 
(Kharif 2016, 2018) and low P condition (Kharif 2016, 2018) 
was performed using the mean data obtained. Violin plot was 
constructed to check the significant difference among lines 
grown under optimum and low P condition for grain yield re-
lated traits. Further stress tolerance indices were calculated 
using the defined formula, and indices were employed to 
distinguish the tolerant and susceptible genotypes. Principal 
component analysis was performed for stress tolerant indices 
using prcomp function, and cluster analysis was performed 
using hclust function in RStudio.

2.7   |   Stability Analysis

Top performing 25 BILs tested over six environments were 
assessed for stability, namely, (1) AMMI model (Gauch and 
Zobel 1996) and (2) GGE biplot (Yan and Kang 2003). AMMI 
model uses analysis of variance (ANOVA) for assessing the 
main effects and principal component analysis (PCA) for the 
residual effects. The percentage sum of square (% SS) was 
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calculated by comparing the SS from AMMI ANOVA. The 
results are presented in AMMI biplot, where the x axis rep-
resents the mean yield and y axis represents the PC1 value. 
The AMMI analytical model was given as per Gauch and 
Zobel (1996).

where Yij is the mean yield of ith genotype in jth environment; 
μ is the general mean; gi is the ith genotypic effect; ej is the jth 
location effect; λn is the eigen value of the PCA axis n; αin and 
γjn are ith genotype jth environment PCA scores for the PCA 
axis n; θij is the residual; and n is the number of PCA axis in 
the model.

The GGE biplot displays both genotype (G) and genotype × en-
vironment (GE) variation for traits under study (Kang 1993) and 
based on SREG (sites regression linear model) (Cornelius, Crossa, 
and Seyedsadr 1996; Crossa, Cornelius, and Yan 2002). The which-
won-where biplot displays the various pattern of genotypes and 
environments in the study. These models were used to interpret 
and visualize the stability and GEI patterns. In the AMMI model, 
only the GEI term is absorbed in the multiplicative component, 
whereas in the GGE model, the main effects of genotypes (G) plus 
the GEI are absorbed into the multiplicative component.

3   |   Results

3.1   |   Descriptive Study for Grain Yield Traits 
Under Optimum P and Low P Soil Conditions

The present study comprised of evaluation of 135 BILs for 
grain yield and related traits under six environments, includ-
ing four under optimum soil P conditions and two under low P 
soil conditions. Under optimum P condition, the DFF ranged 
between 93.75 (NSR50) and 118.25 (NSR89) days, plant height 
varied between 73.75 (NSR94) and 153 cm (NSR68) (Table 1). 
Productive tillers per plant ranged 8.58 (NSR122) to 14.83 
(NSR131) and weight of panicle ranged 1.79 g (NSR94) to 
3.76 g (NSR121). Grain yield per plant ranged 12.87 g (NSR99) 
to 27.17 g (NSR78), plant biomass ranged 19.52 g (NSR122) to 
46.01 g (NSR85) and thousand grain weight ranged 15.28 g 
(NSR36) to 26.29 g (NSR132). Harvest index ranged 27.83 g 
(NSR48) to 49.29 g (NSR122). Similarly, under low soil P con-
ditions, DFF ranged 90.5 days (NSR45) to 137 days (NSR112) 
and plant height ranged 68 cm (NSR94) to 136.67 cm (NSR124). 
Number of productive tillers per plant ranged 4.83 (NSR46) to 
12.5 (NSR20), panicle weight ranged 1.17 g (NSR104) to 3.13 g 
(NSR121) and grain yield per plant ranged 4.08 g (NSR9) to 
13.9 g (NSR7). Plant biomass ranged 8.91 g (NSR106) to 32.05 g 
(NSR10), harvest index ranged 15.98 g (NSR5) to 46.65 g 
(NSR133) and thousand grain weight ranged 13.28 g (NSR37) 
to 20.28 g (NSR124). Skewness and Kurtosis values showed 
that the data are normally distributed for all the traits except 
plant height, days to 50 % flowering under optimum P condi-
tion and the data were normally distributed for all traits under 
low P condition (Figure 1).

3.2   |   Correlation Between Grain Yield Traits 
Under Optimum P and Low P Conditions

Association study was performed on 10 grain yield related traits 
under optimum P and low P conditions, which are displayed 
in Figure 2. The results under optimum P condition revealed a 
significant positive correlation of grain yield with PH (r = 0.34), 
NT (r = 0.39), NPT (r = 0.44), BM (r = 0.5), TDM (r = 0.81), TGW 
(r = 0.24), PW (r = 0.48) and HI (r = 0.51). Biomass exhibited a 
significant correlation with YLDP (r = 0.5), PW (r = 0.24), DFF 
(r = 0.3), NT (r = 0.36), NPT (r = 0.39) and PH (r = 0.4). The 
number of productive tillers showed a positive significant cor-
relation with TDM (r = 0.47), BM (r = 0.39), PH (r = 0.17), YLDP 
(r = 0.44) and NT (r = 0.97). Similarly, under low P soil condi-
tions, grain yield exhibited a significant correlation with TDM 
(r = 0.58), HI (r = 0.46), BM (r = 0.3), PW (r = 0.25), NPT (r = 0.21) 
and NT (r = 0.17). Biomass showed a positive correlation with 
TDM (r = 0.95), YLDP (r = 0.3), PH (r = 0.48), NPT (r = 0.42), NT 
(r = 0.43) and DFF (r = 0.31). The number of productive tillers ex-
hibited a positive significant correlation with NT (r = 0.98), TDM 
(r = 0.43), BM (r = 0.42) and YLDP (r = 0.21).

3.3   |   Evaluation of BILs for Stress Tolerance

Mean data of two wet season (kharif 2016 and 2018) obtained 
under optimum P and low P conditions were used for stress tol-
erance analysis. Mean data comparison between optimum P and 
low P condition exhibited a significant variation for all grain yield 
related traits (Figure 3). Based on the yield data recorded in opti-
mum P and low P condition, eight stress tolerance indices were 
computed (Table 2), and the result showed highest TOL of 23.08 
recorded in NSR100 and lowest of 1.41 recorded on NSR7. YSI 
ranged between 0.17 (NSR9) and 0.91 (NSR7) and YR ranged be-
tween 0.09 (NSR7) and 0.83 (NSR9). Highest STI of 0.93 recorded 
on NSR88 and lowest of 0.14 recorded on NSR99, SSI recorded 
highest in NSR9 (1.43) and lowest in NSR7 (0.16), YI observed 
highest in NSR7 (1.71) and lowest in NSR9 (0.5). Highest percent-
age of yield reduction (PYR) recorded in NSR9 (83.07) and lowest 
in NSR7 (9.19), geometric mean productivity (GMP) recorded high-
est in NSR88 (173.79) and lowest in NSR99 (25.84). Further cor-
relation analysis between grain yield and stress tolerance indices 
was carried out and represented in Figure 4A. The results showed 
a positive significant correlation of grain yield under normal con-
dition (YP) with YR (r = 0.69), SSI (r = 0.69), PYR (r = 0.69), GMP 
(r = 0.71), STI (r = 0.71), TOL (r = 0.92) and negatively correlated 
with YSI (r = −0.69). GMP and STI exhibited a positive significant 
correlation with YP (r = 0.71), TOL (r = 0.39), YS (r = 0.72) and YI 
(r = 0.72). PYR showed a positive correlation with SSI (r = 1.00), YR 
(r = 1.00), YP (r = 0.69), TOL (r = 0.9) and negative significantly cor-
related with YSI (r = −1.00), Ys (r = −0.65), YI (r = −0.65).

Principal component analysis was performed among the stress 
tolerance indices to discern the contribution of major indices to 
total variance. The PC1 and PC2 together explained nearly 98.84% 
to total variation with eigen values greater than 1. Individually 
PC1 explained 61.91% of variation and PC2 explained 36.93% of 
variation. Among the indices, SSI, YR, PYR and TOL had con-
tributed highest to PC1 (Figure 4b). Further cluster analysis was 
carried out to group the individuals into different clusters based 
on Euclidian distance. The introgression lines were grouped into 
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TABLE 1    |    Descriptive Statistics of wild introgression lines evaluated in six different environments for various agromorphological traits.

Soil 
condition ENV Descriptive DFF PH NT NPT PW YLDP BM TGW TDM HI

Optimum 
P

2014 (E1) Min 91.00 73.00 5.67 5.67 1.53 8.53 14.10 15.49 23.12 26.40

Max 126.00 160.00 18.00 17.67 4.57 34.85 46.30 25.74 74.55 50.26

Mean 108.92 126.46 11.94 11.30 3.05 17.97 28.18 20.61 46.15 38.69

Skewness 0.19 −0.75 0.17 0.28 −0.12 0.62 0.46 −0.71 0.48 0.04

Kurtosis 0.22 1.79 0.05 −0.08 −0.31 0.48 0.00 3.10 0.02 −0.53

2015 (E2) Min 95.00 69.00 6.67 6.67 1.08 9.43 15.92 15.11 32.12 23.89

Max 125.00 148.00 21.67 21.33 4.31 36.50 58.71 26.13 88.64 51.43

Mean 114.39 116.31 12.00 11.14 2.60 21.30 34.64 20.04 55.94 38.18

Skewness −1.21 −0.56 0.90 1.12 0.06 0.34 0.24 −0.11 0.37 −0.18

Kurtosis 1.49 0.89 1.84 2.90 −0.64 −0.12 −0.31 1.83 −0.39 0.31

2016 (E3) Min 92.00 68.00 7.00 7.00 1.02 5.43 12.57 15.32 18.00 21.54

Max 125.00 151.67 20.33 19.33 4.40 31.63 50.47 26.50 73.73 49.12

Mean 114.76 121.72 12.36 11.41 2.38 16.72 32.32 21.49 49.04 33.87

Skewness −0.99 −1.11 0.89 0.87 0.48 0.47 0.01 −0.99 −0.12 0.25

Kurtosis 2.12 5.32 1.29 1.61 1.37 1.02 0.58 2.16 0.76 0.11

2018 (E4) Min 88.00 77.33 5.00 5.00 1.80 9.31 14.14 15.19 26.58 21.40

Max 113.00 159.00 24.33 23.00 4.92 40.96 50.83 26.77 86.51 60.39

Mean 103.84 131.76 11.06 11.02 3.53 21.98 25.96 21.66 47.94 45.75

Skewness −1.24 −0.87 1.18 1.03 −0.07 0.75 0.92 −0.62 0.77 −0.47

Kurtosis 2.34 4.07 3.53 2.54 −0.35 0.15 0.54 1.67 0.01 0.77

Mean 
(optimum 

P)

Min 93.75 73.75 8.75 8.58 1.79 12.87 19.52 15.28 34.16 27.83

Max 118.25 153.00 15.33 14.83 3.76 27.17 46.01 26.29 69.84 49.29

Mean 110.59 124.15 11.82 11.20 2.89 19.48 30.28 20.93 49.76 39.10

Skewness −1.34 −1.46 0.32 0.31 −0.04 −0.03 0.23 −0.75 0.02 −0.22

Kurtosis 2.59 7.43 0.24 0.29 0.34 −0.31 1.04 3.23 0.25 0.63

Low P 2016 (E5) Min 95.00 69.67 6.33 6.33 0.85 4.10 9.20 14.40 14.57 10.67

Max 148.00 143.67 17.67 17.67 3.14 14.40 45.87 22.10 54.10 48.29

Mean 126.70 107.35 11.24 11.00 1.57 7.07 21.53 18.59 28.60 26.02

Skewness −0.49 −0.44 0.38 0.42 0.94 1.44 0.42 −0.22 0.50 0.62

Kurtosis −0.84 2.43 −0.14 0.03 0.59 2.81 0.42 −0.36 0.51 −0.15

2018 (E6) Min 86.00 62.33 3.00 3.00 1.05 2.68 7.87 10.30 11.65 13.38

Max 126.00 141.33 16.00 14.33 3.53 17.09 34.10 21.80 51.19 48.46

Mean 107.27 91.62 7.49 7.36 2.24 9.21 13.43 16.90 22.63 40.38

Skewness 0.54 0.73 0.98 0.78 0.35 0.01 2.23 −0.53 1.14 −1.43

Kurtosis −0.25 6.12 2.60 1.37 −0.09 −0.18 8.03 0.06 3.66 2.65

Mean 
(low P)

Min 90.50 68.00 5.17 4.83 1.17 4.08 8.91 13.28 15.25 15.98

Max 137.00 136.67 13.17 12.50 3.13 13.90 32.05 20.28 42.79 46.65

Mean 117.01 99.47 9.40 9.21 1.91 8.10 17.55 17.72 25.66 33.03

Skewness −0.33 0.18 −0.01 −0.19 0.63 0.38 0.49 −0.61 0.39 −0.20

Kurtosis −0.41 3.31 0.10 −0.02 0.18 0.93 0.39 −0.05 0.20 0.57
Note: Bold letters indicate mean value.
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3 major clusters, cluster 1 consists of 69 lines including parent 
KMR3 and NSR86 (DRR Dhan 65), cluster 2 consists of 20 lines 
and cluster 3 consists of 46 lines (Figure 4c).

3.4   |   Genotyping BILs for Low P Tolerance 
and Grain Yield Related Genes

Top performing 25 introgression lines were selected based on 
grain yield under optimum and low P condition. The selected 
lines along with parent (KMR3) and checks N22, Swarna, Dular 
and Kasalath were subjected to genotyping for low P tolerance 
and grain yield and are represented in Figure  5A. For low P 
tolerance, six dominant markers, namely, K42, K45, K46-1, 
K46-2, K48 and K52 located at the 90-kb indel region (Kasalath) 
on chromosome 12 were used. The marker K42 showed a de-
sirable allele at 918 bp and for K46-2 at 227 bp, and both alleles 

were present in NSR30, NSR38, NSR105, NSR124, NSR86, 
Dular and Kasalath. The genotypes NSR30, NSR38, NSR124, 
NSR86, Dular and Kasalath carry the desirable allele at 276 bp 
for K45 marker. Desirable allele for K46-1 at 523 bp was pres-
ent in NSR30, NSR38, NSR96, NSR105, NSR124, NSR86, Dular 
and Kasalath. Similarly, for K48, the desirable allele at 847 bp 
was present in NSR30, NSR101, NSR105, NSR124, Swarna, 
Dular and Kasalath. The genotypes NSR10, NSR30, NSR38, 
NSR43, NSR79, NSR105, NSR124, NSR86, Dular and Kasalath 
carried desirable allele at 505 bp for K52 primer. Among the in-
trogression lines screened, NSR30, NSR38, NSR86 and NSR105 
were harbouring desirable allele for five primers, and NSR124, 
Kasalath and Dular were with desirable allele for all six primers 
(Figure 5B).

Genotyping for grain number gene Gn1a was performed by two 
Indel markers Gn1a-indel1 and Gn1a-indel3, and the desirable 

FIGURE 1    |    Frequency distribution of wild introgression lines derived from KMR3 x O. rufipogon for agromorphological traits.
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allele at 99 bp was observed in all introgression lines and checks 
for Gn1a-indel1. For Gn1a-indel3, the desirable allele was ob-
served in NSR38, Swarna, N22 and Kasalath. For SPIKE-indel3, 
the desirable allele was observed in NSR1, NSR5, NSR7, NSR83 
and N22 at 151 bp. The gene responsible for dense and erect pan-
icle, that is, DEP1 and panicle architecture gene OsSPL14, was 
entirely absent in all the introgression lines and checks. A gene 
responsible for thousand grain weight, that is, TGW6, was pres-
ent in NSR38, NSR62, NSR96, NSR101, Swarna and Kasalath. 
Similarly, gene responsible for grain size, that is, Gs5 was pres-
ent in all the introgression lines evaluated. Among the lines, 
NSR1, NSR5, NSR7, NSR38, NSR96 and NSR101 carried desir-
able allele for three different grain yield genes, that is, Gn1a, 
SPIKE and TGW6.

3.5   |   Stability of Genotypes Across Various 
Environments

The introgression lines evaluated under six environments were 
compared for agromorphological traits showed a significant dif-
ference across environments (Figure  6). Based on grain yield 
per plant data across six environments, 25 introgression lines 
including parent KMR3 were selected and subjected to stability 
analysis.

3.5.1   |   Grain Yield per Plant

ANOVA indicated a significant difference among all the geno-
types for grain yield per plant. Significant mean sum of square 
(MSS) of genotype revealed that they exhibited a large differ-
ence for mean grain yield. Similarly, environment and G × E 
interaction also exhibited a significant difference. It showed 

the genotypes behave differently across varied environments/
seasons. Among all the environments, genotypic effect accounts 
for 3.58%, environment effect was 35.62%, interaction effect was 
22.89% and 14.49% of residual effect was observed for grain yield 
per plant. The SS% of AMMI analysis for grain yield per plant, 
number of productive tillers, thousand grain weight, biomass, 
panicle weight and harvest index were highly contributed by en-
vironment followed by G × E and genotypes.

Discrimination and representativeness graph revealed that 
the average environmental axes (AEA) are the lines that 
passes through average environment and biplot origin. The 
test environment with lesser angle is most representative en-
vironment than others. Among the six-environment studied, 
E2 is the most representative, discriminative environment, 
and E1 and E4 are the least representative environment. 
Discrimination of representative environment from others 
will help in identification of generally adapted genotypes and 
nonrepresentative environment identifies the specifically 
adapted genotypes. Genotype evaluation in Figure 7 describes 
the specific interaction between genotypes and environment. 
Performance of each genotype in varying environment is vi-
sualized in Figure  7. Performance of genotypes in specific 
environments is presented in Figure  7. In E1, the genotypes 
NSR78 and NSR41 were performing superior; in E2, NSR135 
was performing superior as well as stable genotype. Similarly, 
in E3, NSR18 and NSR30 were the superior performers; in 
E4, NSR96 was performing superior. The genotypes NSR7, 
NSR38, NSR43 and NSR86 were performing superior under 
low P stress environments (E5 and E6).

3.5.1.1   |   Mean Versus Stability.  The single-arrowed AEA 
line points out the highest mean grain yield across different envi-
ronment. Based on this, the genotypes NSR60, NSR101, NSR105 

FIGURE 2    |    Correlation matrix of introgression lines for various agromorphological traits evaluated under optimum and low soil P conditions. 
*5% significance; **1% significance and ***0.1% significance.
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and NSR 85 had highest mean yield, and NSR7 and NSR 43 had 
lowest mean grain yield across environment. NSR 135 lying 
exactly on the AEC abscissa showed that it had mean grain yield 
similar to grand mean. The double arrowed line is AEC ordinate 
explains its greater variability; that is, less stable and genotype 
are more uniform, that is, highly stable one across environ-
ment. NSR96 expressed greater variability, that is, poor stable 

line followed by NSR41 and NSR38, whereas NSR135, NSR5 
and NSR88 were the more stable ones.

3.5.1.2   |   Ranking Genotype Based on Relative to the ​
Ideal ​Genotype.  It revealed the genotype had high mean 
performance and high ideal stability across environment 
and are considered as stable or ideal genotypes. An ideal genotype, 

FIGURE 3    |    Violin plot describes the performance of introgression lines for agromorphological traits under optimum and low P conditions. 
Significant differences were represented in * mark. *5% significant difference, **1% significance and ***0.1% significance.
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that is, genotype falling on the centre of centric circle in a pos-
itive direction, also possesses an equal vector length to the lon-
gest vector of the genotypes in positive side, that is, high mean 
performance. Thus, genotypes NSR88, NSR5, NSR135 and NSR 
78 are considered as stable. The ‘Which Won Where’ GGE biplot 
displays an interaction between genotype and environment 
and visualizes the winning genotype (Figure  7). The polygon 
view connecting the genotypes that placed furthest from the ori-
gin and dotted lines divide the entire biplot into different sectors 
and each sector represents a mega environment. For grain yield, six 
environments have fallen in four mega environments, and for E1 
and E2, the winning genotype is NSR41 and NSR78, respectively. 
Similarly, for E4, the winning genotype is NSR96; for E5 and E6, 
the winning genotypes are NSR7, NSR86 and NSR43.

3.5.2   |   Number of Productive Tillers

ANOVA indicated a significant difference among all gen-
otypes for number of productive tillers. Significant MSS of 
genotype revealed that they exhibited a large difference for 
number of productive tillers. Similarly, environment and G × E 
interaction also exhibited a significant difference. It showed 
the genotypes behave differently across varied environments/
seasons. Among the test environments, E2 is in positive di-
rection and E5 in negative direction. Among the genotypes, 
NSR41, NSR86 and NSR79 were observed stable genotypes for 
NPT. The which-won-where graph revealed six environments 
divided into 4 mega environments and among which in E3, 
NSR101 found winning genotype; for E1, NSR7, NSR38 and 
NSR62 were the winning genotypes. Similarly, for E4, NSR135 
is the winning genotype.

3.5.3   |   Biomass

ANOVA revealed a significant difference among genotypes 
for biomass. Significant MSS of genotypes revealed that they 
exhibited a large difference for biomass per plant. Similarly, 
environment and G × E interaction also exhibited a significant 
difference. Among the environments, E3 was the least influ-
enced, and E1 and E5 were most influenced. Genotypic view 
revealed that NSR105 had highest mean values and NSR18, 
NSR38 and NSR83 had highest biomass; NSR1, NSR7 and 
NSR79 had lowest biomass per plant. The which-won-where 
biplot revealed that the six-environment divided into two mega 
environments, and NSR105 was observed as a winning geno-
type for E2 and E4. NSR5 and NSR7 were the winning geno-
types for E1.

3.5.4   |   Harvest Index

ANOVA with significant MSS of genotype revealed that they 
exhibited a large difference for harvest index. Similarly, 
environment and G × E interaction also exhibited a significant 
difference for harvest index. Among the environment, E3 
was least influenced, and E6 and E5 were most influenced; 
among the genotypes, NSR135 was found as a stable genotype. 
Genotypes NSR30, NSR78, NSR88 and KMR3 observed 
highest for harvest index, and NSR38, NSR54 and NSR62 
were observed lowest for harvest index. The which-won-
where graph revealed 2 mega environments, among which 
NSR38 and NSR86 were the winning genotypes for E5 and 
E6, and NSR56 and NSR85 were the winning genotypes for 
E1 and E4.

TABLE 2    |    AMMI analysis of variance (ANOVA) of selected introgression lines for agromorphological traits.

YLDP NPT TGW BM PW HI

Source Df Sum of square

ENV 5 16,743.74** 1013.50** 1166.96** 22,500.00** 127.30** 15,512.00**

REP (ENV) 12 240.85 29.50 8.46 812.00** 10.12** 507.00

GEN 24 1682.23** 461.00** 1026.78** 6144.00** 25.45** 4255.00**

GEN:ENV 120 10,761.03** 2021.10** 667.62** 16,584.00** 109.33** 13,186.00**

PC1 28 4663.47** 663.40** 339.28** 6762.00** 40.36** 5102.00**

PC2 26 2663.46** 651.50** 154.10** 3732.00** 26.95** 3733.00**

PC3 24 1830.49** 319.90** 79.81** 3046.00** 18.86** 2231.00**

PC4 22 959.17** 251.10** 71.61** 1988.00** 16.24** 1379.00

PC5 20 644.44 135.20 22.82** 1055.00 6.93 740.00

Residuals 288 6812.95 2039.20 310.41 9653.00 66.14 11,995.00

Total 569 47,001.81 7585.40 3847.85 72,276.00 447.68 58,640.00

% SS of genotype 3.58 6.08 26.68 8.50 5.68 7.26

% SS of environment 35.62 13.36 30.33 31.13 28.43 26.45

% SS of G × E 22.89 26.64 17.35 22.95 24.42 22.49

Note: Bold letters indicate mean value.
**Highly significant difference.
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3.5.5   |   Panicle Weight

ANOVA with significant MSS of genotype revealed that they 
exhibited a large difference for panicle weight. Similarly, envi-
ronment and G × E interaction also exhibited a significant dif-
ference for panicle weight. Among the genotypes, NSR1, NSR41, 
NSR73, NSR79 and NSR96 were the stable genotypes across en-
vironment. Genotypes NSR7, NSR10 and NSR56 recorded high 
panicle weight, and NSR101 and KMR3 recorded low for panicle 
wight. Among environment, E3 and E4 were most influenced, 
and E4 and E6 were least influenced. Which-won-where biplot 

revealed three mega environments, and NSR18 and NSR85 were 
found as winning genotypes for E2 and E4, respectively. In E1 
and E5, NSR5 was observed as a winning genotype, and NSR101 
and NSR135 were observed as winning genotypes in E6.

3.5.6   |   Thousand Grain Weight

ANOVA with significant MSS of genotype revealed that they ex-
hibited a large difference for thousand grain weight. Similarly, 
environment and G × E interaction also exhibited a significant 

FIGURE 4    |    Stress tolerance indices among the introgression lines: (A) Correlation between the stress tolerance indices; (B) principal component 
analysis explains the association and performance of genotype for each traits; and (C) cluster analysis based on stress tolerance indices.
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FIGURE 5    |    (A) Representative gel picture of genotypes screened for grain yield related genes and low P tolerant genes in selected introgression 
lines; (B) heat map represents the genotyping of selected wild introgression lines for grain yield related genes and low P tolerance genes. Green—
desirable allele; blue—undesirable allele.
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difference for thousand grain weight. Among the genotypes, 
NSR56 was observed as a stable genotype, and NSR18, NSR30 
and NSR101 showed highest thousand grain weight. Which-
won-where biplot revealed three mega environments and NSR5 

as a winning genotype in E6; NSR10, NSR43 and NSR124 were 
found as the winning genotypes in E3. Genotypes NSR30, 
NSR41 and NSR101 were observed as winning genotypes in E1, 
E2, E4 and E5.

FIGURE 6    |    Boxplot represents the significant difference among the six environments for various agromorphological traits.
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FIGURE 7    |    AMMI, GGE and which-won-where biplot view of 25 selected introgression lines for grain yield per plant. E1–E6 indicate the six 
different environments as described in Section 2.
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3.6   |   Selection of Superior Genotypes Based on 
Multitrait Stability Indices

Selection of superior genotypes based on simultaneous selection 
for combined mean performance and stability of yield related 
traits (NPT, YLDP, BM, HI, PW, TGW, PH, DFF and TDM) 
are presented in Figure  8. The genotypes with lowest MTSI 

values represent high stability and maximum mean values 
for all the traits selected by considering the selection intensity 
of 15%. Accordingly, genotypes NSR135, KMR3, NSR79 and 
NSR18 were the superior genotypes with low MTSI values of 
4. Genotypes NSR1, NSR10, NSR62 and NSR43 were recorded 
with highest MTSI values and represent the poor performance 
with low stability, as they are located nearer to origin. Heat map 

FIGURE 8    |    Grain yield, yield related traits performance and stability of selected genotypes across environments. (A) Multitrait stability index 
(MTSI) of wild introgression lines. Red and black circles indicate selected and nonselected genotypes, respectively. (B) WAASBY indexes showing 
ranks of the genotypes according to weighting scores of grain yield and stability. List of suitable wild introgression lines in a group.
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based on WAASBY ratio, the genotypes were grouped into four 
groups. Among the four groups, Group 1 consists of genotypes 
NSR96, NSR62, NSR60, NSR30 and NSR101, and Group 2 con-
sists of genotypes NSR83, NSR7, NSR56, NSR43, NSR38, NSR18 
and NSR10. Group 3 consists of genotypes NSR88, NSR85, 
NSR78, NSR54, NSR41, NSR135, NSR124 and NSR1; Group 4 
consists of genotypes NSR86, NSR79, NSR5, NSR105 and KMR3. 
Among the four groups, the genotypes under Groups 3 and 4 
were recommended for varietal development for low P toler-
ance. Among these genotypes, NSR86 and NSR5 were released 
as low P tolerant high yielding varieties by Central varietal re-
lease committee, as DRRdhan65 (2022) and DRRdhan74 (2024), 
respectively, for major rice growing states of India after 3 years 
of evaluation under All India Coordinated Research Project on 
Rice (AICRPR).

4   |   Discussion

Majority of the rice cultivations in Asia and Sub-Saharan 
African regions are based on low land irrigated conditions 
leading to an increase in soil acidity (Rakotoson, Tsujimoto, 
and Nishigaki  2022). Under acidic soil conditions (pH < 6), 
minerals like phosphorus get fixed to soil particles in organic 
form, which are not available to plants. Reduced availability of 
P causes morphological and physiological changes in plants. 
Wild introgression lines are novel source for low P tolerance 
as well as high grain yield (Sunanda et al. 2023). Thus, geno-
typing of introgression lines using low P as well as grain yield 
related genes was performed using allele specific markers. 
Besides stress tolerance, identification of stable performance 
of genotypes for varying soil and climatic condition is essen-
tial for successful varietal release.

Under optimum soil P conditions, the descriptive study re-
vealed a significant difference among the introgression lines 
for all the traits studied. Frequency studies showed a bell-
shaped curve revealing that the traits were distributed quan-
titatively. Further association studies under optimum soil P 
conditions revealed a significant association of grain yield 
with all the traits except days to 50% flowering. Biomass 
showed a significant association with all the traits except 
thousand-grain weight, and a significant negative correlation 
was observed with harvest index. Similarly, grain yield exhib-
ited a significant association with all traits except days to 50% 
flowering, plant height and thousand grain weight. Biomass 
showed negative significant correlation with thousand grain 
weight and harvest index under low P stress conditions. 
Performance of genotypes under optimum and stress condi-
tions revealed a significant reduction for plant height, number 
of productive tillers, biomass, grain yield, panicle weight and 
thousand grain weight under P stress condition. The results 
coincide with the previous reports by Sun et al. (2023), Irfan 
et al. (2020) and Sunanda et al. (2023).

Introgression lines grown under optimum P and low P condi-
tions were compared for grain yield and its component traits. 
The significant differences that were observed for all the traits 
demonstrate the diversity of introgression lines for low P tol-
erance. Further, variability among the lines was utilized for 
identifying the tolerant lines using stress tolerant indices. 

Tolerant index (TOL) defines the difference between grain 
yield under stress (Ys) and grain yield under optimum condi-
tion (Yp) (Rosielle and Hamblin 1981; Basavaraj et al. 2021). 
Introgression lines NSR7, NSR99, NSR84, NSR52 and NSR107 
recorded lowest TOL values represent the highest level of tol-
erance to low P stress. Selection of genotypes based on low 
TOL represents high yield potential under P stress condition 
(Fernandez 1992; Singh et al. 2015) but not high yielding lines. 
STI is an index used to discriminate high yielding genotypes 
under stress and optimum condition (Fernandez 1992; Singh 
et  al.  2015). Similarly, GMP is another index for evaluating 
stress tolerant genotypes. SSI greater than 1 indicates above 
average stability (Guttieri et  al.  2001; Basavaraj et  al.  2021). 
Among these, STI and GMP are better indices compared to 
TOL and SSI index. Accordingly, NSR85, NSR124, NSR80, 
NSR54 and NSR88 lines reported highest STI and GMP values. 
Thus, these lines identified as most stable, productive and tol-
erant lines among the introgression lines (Ashraf et al. 2015; 
Basavaraj et al. 2021). Percentage of yield reduction (PYR) re-
corded lowest in NSR7, NSR84, NSR52, NSR99 and NSR107, 
and genotypes NSR100, NSR13, NSR93 and NSR9 recorded 
the highest yield reduction percentage. Thus, the BILs with 
lowest PYR are more tolerant to low P stress. A high value 
of YI recorded on NSR38, NSR124, NSR86, NSR88 and NSR7 
indicates that these lines were tolerant to stress conditions 
(Ashraf et al. 2015; Singh et al. 2015). As each index resulted 
in detection of a different set of tolerant lines; for further con-
firmation, correlation studies were performed among the in-
dices, and the result showed the highest positive significant 
correlation was observed between STI with GMP. Similarly, 
TOL reported a positive significant correlation with SSI, PYR, 
YR and YP. The index SSI reported a significant association 
with TOL, YP and YR. A significant positive association of STI 
with grain yield traits under optimum and P stress conditions 
revealed the importance of STI as one of the major selection 
indexes for further advancement for varietal development. 
Similar results were reported by Basavaraj et  al.  (2021) and 
Singh et al. (2015).

Principal component analysis was computed using the stress 
tolerance indices revealed that PC1 contributed 61.9% and PC2 
recorded 36.9%. Eigen values greater than 1 were observed on 
first two principal components. Among the stress tolerant 
indices, TOL, PYR, YR, SSI and YP exhibited a positive con-
tribution with PC1, and traits like STI, GMP, YS, YSI and YI 
exhibited a negative contribution to PC1. Further cluster anal-
ysis revealed that the introgression lines were divided into 
three clusters. Cluster I contained 70 lines including recurrent 
parent KMR3, Cluster II included 20 introgression lines and 
cluster III had 46 introgression lines. Mean value compari-
son of introgression lines across six environments including 
P stress and nonstress condition revealed a significant differ-
ence for number of productive tillers, grain yield per plant, 
biomass, harvest index, panicle weight, thousand grain weight 
and plant height. ANOVA revealed that the environments 
were significantly different for all the traits. Similarly, geno-
types, G × E interactions were also found significant for all the 
traits indicating the importance of multienvironment testing 
for efficient breeding and adaptability to varying conditions 
(Atlin et al. 2000; Liang et al. 2015). Thus, the selection based 
on multienvironment studies improves the efficiency. Varying 
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degree of G × E interactions were recorded in rice and other ce-
reals crops (Balakrishnan et al. 2016; Pillai et al. 2023; Jadhav 
et al. 2019; De Silva et al. 2023; Adu et al. 2013). Models like 
AMMI and GGE biplot analysis were utilized for selecting sta-
ble performing introgression lines under multi environment 
study (Zhang et al. 2019).

AMMI model showed that genotypes NSR60, NSR101, NSR105 
and NSR85 reported to have higher grain yield and NSR135, 
NSR5 and NSR88 were more stable genotypes for grain yield. 
Similarly, for productive tillers, NSR41, NSR86 and NSR79 
reported a stable performance. Introgression lines NSR 105, 
NSR18, NSR38 and NSR83 reported highest biomass per 
plant, and NSR30, NSR78, NSR88 and KMR3 recorded high-
est harvest index per plant. For panicle weight, NSR1, NSR41, 
NSR73, NSR79 and NSR96 and, for thousand grain weight, 
NSR56 were identified as the stable genotypes. The genotypes 
with superior performance but less stable across environment 
can be stabilized in future by following the limited backcross 
approach. The genotype that displayed closer to mean envi-
ronment direction and has less or zero projection on AEC or-
dinate is considered as ideal genotype, that is, the genotype 
with high mean yield and high stability. Based on AEA line 
projection, genotypes NSR60, NSR101, NSR105 and NSR 85 
had the highest mean yield, and genotypes NSR135, NSR5 
and NSR88 were the stable genotypes. Which-won-where 
biplot displayed genotypes NSR41, NSR78 and NSR96 as the 
winning genotypes for grain yield under different environ-
ments. Similarly, for biomass, NSR105, NSR5 and NSR7 were 
the winning genotypes under varying conditions. Further 
simultaneous selection (WAASBY-based) multitrait stability 
index (MTSI) effectively identified the ideal genotypes based 
on combined stability and genotypic performance (Huang 
et al. 2021; Pour-Aboughadareh et al. 2021). The study showed 
that NSR135, KMR3, NSR79 and NSR18 recorded the lowest 
MTSI values, indicating the lines with high stability and high 
mean performance.

Genotyping of selected introgression lines for allele specific 
markers Gn1a-indel1 and GS5-03SNP-OPF/OPR revealed that 
Gn1a and GS5 alleles were present in all the individuals, whereas 
DEP1 and SPL14 were absent in the selected lines. Allele specific 
markers Gn1a-indel3, SPIKE-indel3 and TGW6-1d F/PR showed 
segregation among the lines for their respective desirable allele. 
Gn1a increases grain number in rice, and the gene was pres-
ent in NSR38 and check varieties Swarna, N22, Kasalath (Kim 
et al. 2016). Similarly, the allele that increases spikelet number 
per panicle (SPIKE) was recorded in NSR1, NSR5, NSR7, NSR83 
and N22. The gene that increases thousand grain weight TGW6 
of rice grains was observed in NSR38, NSR62, NSR96, NSR101, 
Swarna, N22 and Kasalath. The recurrent parent KMR3 carries 
desirable allele for Gn1a and GS5. The study concludes that de-
sirable alleles for SPIKE and TGW6 were derived from the wild 
parent O. rufipogon, which enhanced the yield level in intro-
gression lines. It was found that DEP1 and OsSPL14 desirable 
alleles were completely absent in any introgression lines and 
parent KMR3 indicates the importance of detecting sources and 
developing novel recombinations in this genetic background. 
Further, the introgression lines were also screened for low P tol-
erance using markers in the 90 Kb InDel region of Pup1 locus 
(Wissuwa, Yano, and Ae  1998; Wissuwa et  al.  2002). Checks 

Kasalath, Dular and introgression lines NSR30 and NSR124 car-
ried desirable allele for all six markers, whereas NSR38, NSR105 
and NSR86 (DRRDhan65) reported to have five desirable alleles 
for low P tolerance. Interestingly, the parent KMR3 did not am-
plify the desirable allele for P tolerance, indicating that the de-
sirable alleles were derived from the wild parent O. rufipogon. 
Thus, it revealed that the trait low P tolerance was entirely con-
tributed by wild parent. So further mapping study will help to 
identify novel QTLs for low P tolerance from wild parent and 
that can be used in future breeding programmes.

Besides, several significant findings were reported earlier on the 
introgression lines derived from KMR3/O. rufipogon. The in-
trogression lines NSR18, NSR25, NSR36, NSR38 and NSR82 re-
ported for high photosynthetic rate and carboxylation efficiency 
than recurrent parent KMR3 (Haritha et  al.  2017). Similarly, 
salinity screening studies revealed that NSR105, NSR106, 
NSR108, NSR114 and Chinsurah Nona2 (IL50-13) were highly 
tolerant and NSR17 and NSR38 were highly sensitive to salt 
stress (Ganeshan et al. 2016; Thummala et al. 2022). Grain yield 
studies revealed NSR18 had highest grain yield per plant and 
plot yield (Reddy et  al.  2012). Based on present and previous 
studies, NSR38 had recorded highest plant biomass, high yield-
ing and winning genotypes in mega environments, tolerant to 
low phosphorous stress, and carried desirable alleles for Gn1a, 
TGW6, SPIKE and PSTOL1 but sensitive to salt stress. Similarly, 
NSR18 recorded high biomass, thousand grain weight, grain 
yield and highly stable performer; NSR105 recorded the highest 
grain yield and carried desirable allele for low P tolerance.

Till date, three improved introgression lines derived from O. 
rufipogon were released publicly by the Central Variety Release 
Committee in India. It includes Dhanrasi (C 11-A-41) a low 
land variety with genes for grain yield, blast resistance, bacte-
rial blight and tungro disease introgressed from O. rufipogon. 
DRRDhan65 (NSR86) (S.O. 4065(E). dt 31st Aug, 2022) a high 
yielding, low P tolerant variety with multiple stress tolerance 
and Chinsurah Nona 2 (S.O. 3220 (E) dt 9th July, 2019) a high 
yielding, salt tolerant variety derived from O. rufipogon. Thus, 
previous reports and released varieties indicate the very high 
potential of introgression lined derived from interspecific 
cross of O. sativa/O. rufipogon for crop improvement as well as 
identification of novel genes for biotic, abiotic stress tolerance 
and grain yield genes. To overcome the hybridization barri-
ers and further linkage drag associated with wide crosses, 
these improved introgression lines can be utilized in future 
breeding programmes. The introgression lines derived from 
O. rufipogon can serve as a potential donor for novel genes for 
multiple stress tolerance and yield improvement.

5   |   Conclusion

With this collective information, the study concludes the iden-
tification of tolerant lines NSR85, NSR124, NSR80, NSR54 
and NSR88 for low phosphorus condition (based on STI and 
GMP) and stable lines for grain yield, namely, NSR135, NSR5 
and NSR88. Further, introgression line NSR38 carried desir-
able alleles for low P tolerance (PSTOL1), TGW6 and Gn1a. A 
high yielding stable line NSR5 harbouring desirable SPIKE 
allele enhanced the number of spikelets per plant. Among the 
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genotypes, NSR 38, NSR7 and NSR43 were identified as a su-
perior performer under low P stress conditions, and genotypes 
NSR78, NSR41, NSR18, NSR30 and NSR96 were identified as a 
superior performer under optimal P conditions. The genotype 
NSR135 was performed stable in both optimal P and low P en-
vironments. To avoid the hybridization problems associated 
with directly using wild accession, utilization of improved intro-
gression line as a parent in future breeding programme is sug-
gested. By assessing 135 introgression lines, we identified stress 
environment-specific lines with desirable alleles for tolerance 
and yield enhancement, which can be effectively employed in 
breeding programmes.
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